By Topic

A 3-D SAR model for current source interstitial hyperthermia

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
de Bree, J. ; Dept. of Radiotherapy, Univ. Hospital Utrecht, Netherlands ; van der Koijk, J.F. ; Lagendijk, J.J.W.

A three-dimensional (3-D) model is presented for the calculation of the specific absorption rate (SAR) in human tissue during current source interstitial hyperthermia. The model is capable of millimeter resolution and can cope with irregular implants in heterogeneous tissue. The SAR distribution is calculated from the electrical potential. The potential distribution is determined by the dielectric properties of the tissue and by the electrode configuration. The dielectric properties and the current injection of the electrodes are represented on a 3-D uniform grid. The calculated potential at an electrode current injection point is not the actual electrode potential at that point. To estimate this potential a grid independent representation of an electrode together with an analytical solution in the neighborhood of the electrode are used. The calculated potential on the electrode surface is used to estimate the electrode impedance. The tissue implementation is validated by comparing calculated distributions with analytical solutions. The electrode implementation is verified by comparing different discretizations of an electrode configuration and by comparing numerically calculated electrode impedances with analytically calculated impedances.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:43 ,  Issue: 10 )