Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Deformable templates using large deformation kinematics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Christensen, G.E. ; Mallinckrodt Inst. of Radiol., Washington Univ. Sch. of Med., St. Louis, MO, USA ; Rabbitt, R.D. ; Miller, M.I.

A general automatic approach is presented for accommodating local shape variation when mapping a two-dimensional (2-D) or three-dimensional (3-D) template image into alignment with a topologically similar target image. Local shape variability is accommodated by applying a vector-field transformation to the underlying material coordinate system of the template while constraining the transformation to be smooth (globally positive definite Jacobian). Smoothness is guaranteed without specifically penalizing large-magnitude deformations of small subvolumes by constraining the transformation on the basis of a Stokesian limit of the fluid-dynamical Navier-Stokes equations. This differs fundamentally from quadratic penalty methods, such as those based on linearized elasticity or thin-plate splines, in that stress restraining the motion relaxes over time allowing large-magnitude deformations. Kinematic nonlinearities are inherently necessary to maintain continuity of structures during large-magnitude deformations, and are included in all results. After initial global registration, final mappings are obtained by numerically solving a set of nonlinear partial differential equations associated with the constrained optimization problem. Automatic regridding is performed by propagating templates as the nonlinear transformations evaluated on a finite lattice become singular. Application of the method to intersubject registration of neuroanatomical structures illustrates the ability to account for local anatomical variability

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 10 )