By Topic

RGB calibration for color image analysis in machine vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Young-Chang Chang ; Dept. of Agric. Eng., Illinois Univ., Urbana, IL, USA ; J. F. Reid

A color calibration method for correcting the variations in RGB color values caused by vision system components was developed and tested in this study. The calibration scheme concentrated on comprehensively estimating and removing the RGB errors without specifying error sources and their effects. The algorithm for color calibration was based upon the use of a standardized color chart and developed as a preprocessing tool for color image analysis. According to the theory of image formation, RGB errors in color images were categorized into multiplicative and additive errors. Multiplicative and additive errors contained various error sources-gray-level shift, a variation in amplification and quantization in camera electronics or frame grabber, the change of color temperature of illumination with time, and related factors. The RGB errors of arbitrary colors in an image were estimated from the RGB errors of standard colors contained in the image. The color calibration method also contained an algorithm for correcting the nonuniformity of illumination in the scene. The algorithm was tested under two different conditions-uniform and nonuniform illumination in the scene. The RGB errors of arbitrary colors in test images were almost completely removed after color calibration. The maximum residual error was seven gray levels under uniform illumination and 12 gray levels under nonuniform illumination. Most residual RGB errors were caused by residual nonuniformity of illumination in images, The test results showed that the developed method was effective in correcting the variations in RGB color values caused by vision system components

Published in:

IEEE Transactions on Image Processing  (Volume:5 ,  Issue: 10 )