By Topic

Multichannel transforms for signal/image processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pitas, I. ; Dept. of Inf., Aristotelian Univ. of Thessaloniki, Greece ; Karasaridis, A.

This paper presents a novel approach to the Fourier analysis of multichannel time series. Orthogonal matrix functions are introduced and are used in the definition of multichannel Fourier series of continuous-time periodic multichannel functions. Orthogonal transforms are proposed for discrete-time multichannel signals as well. It is proven that the orthogonal matrix functions are related to unitary transforms (e.g., discrete Hartley transform (DHT), Walsh-Hadamard transform), which are used for single-channel signal transformations. The discrete-time one-dimensional multichannel transforms proposed in this paper are related to two-dimensional single-channel transforms, notably to the discrete Fourier transform (DFT) and to the DHT. Therefore, fast algorithms for their computation can be easily constructed. Simulations on the use of discrete multichannel transforms on color image compression have also been performed

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 10 )