By Topic

Hierarchical image coding via cerebellar model arithmetic computers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Iiguni, Y. ; Dept. of Commun. Eng., Osaka Univ., Japan

A hierarchical coding system for progressive image transmission that uses the generalization and learning capability of CMAC (cerebellar model arithmetic computer or cerebellar model articulation controller) is described. Each encoder and decoder includes a set of CMACs having different widths of generalization region. A CMAC with a wider generalization region is used to learn a lower frequency component of the original image. The training signals for each CMAC are progressively transmitted to a decoder. Compression is achieved by decreasing the number of training signals for CMAC with a wider generalization region, and by making quantization intervals wider for CMAC with a smaller generalization region. CMACs in the decoder are trained on the training signals to be transmitted. The output is recursively added to the other so that the quality of image reconstruction is gradually improved. The proposed method, unlike the conventional hierarchical coding methods, uses no filtering technique in both decimation and interpolation processes, and has the following advantages: (i) it does not suffer from problems of blocking effect; (ii) the computation includes no multiplication; (iii) the coarsest reconstructed image is quickly produced; (iv) the total number of transmitted data is equal to the number of the original image pixels; (v) all the reconstructed images are equal to the original image in size; (vi) quantization errors introduced at one level can be taken into account at the next level, allowing lossless progressive image transmission

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 10 )