By Topic

Time dependence of NOx removal rate by a corona radical shower system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In this paper, the effects of flue gas flow rate and seed gas on the dynamics of corona discharge current-voltage characteristics and NO x removal characteristics are experimentally investigated for a corona radical shower system. The corona discharge current-voltage characteristics have two operating modes which have a significant influence on NOx removal characteristics, where the threshold value of the treatment gas to seed gas flow rate ratio is about 8. The hysteresis of corona current-voltage characteristics is observed in this system. For longer operational time, corona current and NOx removal rate significantly changes with time. When the operation of the apparatus starts at relatively low applied voltage, the corona current under constant applied voltage increases with time to reach a maximum value, then decreasing with time to reach a steady state. At this condition, high NOx removal efficiency can be achieved

Published in:

Industry Applications, IEEE Transactions on  (Volume:32 ,  Issue: 5 )