By Topic

Chip-Level Redundancy in Distributed Shared-Memory Multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gold, B.T. ; Comput. Archit. Lab. (CALCM), Carnegie Mellon Univ., Pittsburgh, PA, USA ; Falsafi, B. ; Hoe, J.C.

Distributed shared-memory (DSM) multiprocessors provide a scalable hardware platform, but lack the necessary redundancy for mainframe-level reliability and availability. Chip-level redundancy in a DSM server faces a key challenge: the increased latency to check results among redundant components. To address performance overheads, we propose a checking filter that reduces the number of checking operations impeding the critical path of execution. Furthermore, we propose to decouple checking operations from the coherence protocol, which simplifies the implementation and permits reuse of existing coherence controller hardware. Our simulation results of commercial workloads indicate average performance overhead is within 4% (9% maximum) of tightly coupled DMR solutions.

Published in:

Dependable Computing, 2009. PRDC '09. 15th IEEE Pacific Rim International Symposium on

Date of Conference:

16-18 Nov. 2009