By Topic

Impact of Data Fusion on Real-Time Detection in Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rui Tan ; City Univ. of Hong Kong, Hong Kong, China ; Guoliang Xing ; Benyuan Liu ; Jianping Wang

Real-time detection is an important requirement of many mission-critical wireless sensor network applications such as battlefield monitoring and security surveillance. Due to the high network deployment cost, it is crucial to understand and predict the real-time detection capability of a sensor network. However, most existing real-time analyses are based on overly simplistic sensing models (e.g., the disc model) that do not capture the stochastic nature of detection. In practice, data fusion has been adopted in a number of sensor systems to deal with sensing uncertainty and enable the collaboration among sensors. However, real-time performance analysis of sensor networks designed based on data fusion has received little attention. In this paper, we bridge this gap by investigating the fundamental real-time detection performance of large-scale sensor networks under stochastic sensing models. Our results show that data fusion is effective in achieving stringent performance requirements such as short detection delay and low false alarm rates, especially in the scenarios with low signal-to-noise ratios (SNRs). Data fusion can reduce the network density by about 60% compared with the disc model while detecting any intruder within one detection period at a false alarm rate lower than 2%. In contrast, the disc model is only suitable when the SNR is sufficiently high. Our results help understand the impact of data fusion and provide important guidelines for the design of real-time wireless sensor networks for intrusion detection.

Published in:

Real-Time Systems Symposium, 2009, RTSS 2009. 30th IEEE

Date of Conference:

1-4 Dec. 2009