Cart (Loading....) | Create Account
Close category search window
 

On the application of the Neuron MOS transistor principle for modern VLSI design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Weber, W. ; Corp. Res. & Dev., Siemens AG, Munich, Germany ; Prange, S.J. ; Thewes, R. ; Wohlrab, E.
more authors

In this paper, the speed performance, power consumption, and layout area of Neuron MOS transistor circuits are monitored considering the requirements of modern VLSI design. The Neuron MOS transistor is a recently discovered device principle which has a number of input gates that couple capacitively to a floating gate. The floating gate potential controls the current of a transistor channel. This device can be used in logic circuits. A threshold current through the Neuron MOS transistor can be defined that causes a switching of the output of the logic circuits as soon as the channel current surmounts or falls below the specified value. We designed two different multiplier cells, one based on a Neuron MOS inverter, and the other on a Neuron MOS n-MOSFET which is used as one input device of a comparator circuit. Functionality of both cells is proven for data rates up to 50 MHz which represents the first high-speed measurement of a circuit based on this new design principle. A perspective for the upper speed limit found at more than 500 MHz is given by simulation. The new design principle has a layout area reduced by more than a factor of two compared to usual multiplier cells. Moreover, it is shown, that depending on the design chosen, high speed operation leads to considerable power savings. In view of those advantages it is concluded that the principle of threshold logic qualifies for a major breakthrough for packing density improvement of CMOS-based applications

Published in:

Electron Devices, IEEE Transactions on  (Volume:43 ,  Issue: 10 )

Date of Publication:

Oct 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.