Cart (Loading....) | Create Account
Close category search window
 

Nonlithographic nano-wire arrays: fabrication, physics, and device applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Routkevitch, D. ; Dept. of Chem., Toronto Univ., Ont., Canada ; Tager, A.A. ; Haruyama, Junji ; Almawlawi, D.
more authors

A novel system of nanostructures is described consisting of nonlithographically produced arrays of nano-wires directly electrodeposited into porous anodic aluminum oxide templates. Using this method regular and uniform arrays of metal or semiconductor nano-wires or nano-dots can be created with diameters ranging from ~5 nm to several hundred nanometers and with areal pore densities in the ~109-1011 cm-2 range. We report on the present state of their fabrication, properties, and prospective device applications. Results of X-ray diffraction, Raman and magnetic measurements on metal (Ni, Fe) and semiconductor (CdS, CdSe, CdSx Se1-x, CdxZn1-xS and GaAs) wires are presented. The I-V characteristics of two terminal devices made from the nano-arrays are found to exhibit room temperature periodic conductance oscillations and Coulomb-blockade like current staircases. These observations are likely associated with the ultra-small tunnel junctions that are formed naturally in the arrays. Single-electron tunneling (SET) In the presence of interwire coupling in these arrays is shown to lead to the spontaneous electrostatic polarization of the wires. Possible device applications such as magnetic memory or sensors, electroluminescent flat-panel displays, and nanoelectronic and single-electronic devices are also discussed

Published in:

Electron Devices, IEEE Transactions on  (Volume:43 ,  Issue: 10 )

Date of Publication:

Oct 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.