By Topic

A Gauss-Newton-like optimization algorithm for “weighted” nonlinear least-squares problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guillaume, P. ; Dept. of Fundamental Electr. & Instrum., Vrije Univ., Brussels, Belgium ; Pintelon, R.

The Gauss-Newton algorithm is often used to minimize a nonlinear least-squares loss function instead of the original Newton-Raphson algorithm. The main reason is the fact that only first-order derivatives are needed to construct the Jacobian matrix. Some applications as, for instance multivariable system identification, give rise to “weighted” nonlinear least-squares problems for which it can become quite hard to obtain an analytical expression of the Jacobian matrix. To overcome that struggle, a pseudo-Jacobian matrix is introduced, which leaves the stationary points untouched and can be calculated analytically. Moreover, by slightly changing the pseudo-Jacobian matrix, a better approximation of the Hessian can be obtained resulting in faster convergence

Published in:

Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 9 )