By Topic

Power and performance modeling of virtualized desktop systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Andrzej Kochut ; IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY, 10532, USA

Desktop virtualization is a new delivery method in which desktop operating systems execute in a data center and users access their applications using stateless ¿thin-client¿ devices. This paradigm promises significant benefits in terms of data security, flexibility, and reduction of the total cost of ownership. However, in order to further optimize this approach while maintaining good user experience, efficient resource management algorithms are required. This paper formulates an analytical model allowing for detailed investigation of how power consumption of virtualized server farm depends on properties of workload, adaptiveness of virtualization infrastructure, and average density of virtual machines per physical server. Assumptions needed to develop the model are confirmed using statistical analysis of desktop workload traces and the model itself is also validated using simulations. We apply the model to compare power consumption of static and dynamic virtual machine allocation strategies. The results of the study can be used to develop online virtual machine migration algorithms. Even though this paper focuses on virtualized systems running desktop workloads, the modeling approach is general and can be applied in other contexts.

Published in:

2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems

Date of Conference:

21-23 Sept. 2009