By Topic

Real-time performance modeling for adaptive software systems with multi-class workload

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dinesh Kumar ; IBM T.J. Watson Research Center, Hawthorne, NY, USA ; Asser Tantawi ; Li Zhang

Modern, adaptive software systems must often adjust or reconfigure their architecture in order to respond to continuous changes in their execution environment. Efficient autonomic control in such systems is highly dependent on the accuracy of their representative performance model. In this paper, we are concerned with real-time estimation of a performance model for adaptive software systems that process multiple classes of transactional workload. Based on an open queueing network model and an Extended Kalman Filter (EKF), experiments in this work show that: (1) the model parameter estimates converge to the actual value very slowly when the variation in incoming workload is very low, (2) the estimates fail to converge quickly to the new value when there is a step-change caused by adaptive reconfiguration of the actual software parameters. We therefore propose a modified EKF design in which the measurement model is augmented with a set of constraints based on past measurement values. Experiments demonstrate the effectiveness of our approach that leads to significant improvement in convergence in the two cases.

Published in:

2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems

Date of Conference:

21-23 Sept. 2009