By Topic

A Sequential Radial Basis Function Neural Network Modeling Method Based on Partial Cross Validation Error Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wen Yao ; Coll. of Aerosp. & Mater. Eng., Nat. Univ. of Defense Technol., Changsha, China ; Xiaoqian Chen

Radial Basis Function Neural Network (RBFNN) is widely used in approximating high nonlinear functions. The network complexity and approximation accuracy are directly dominated by the training data. So how to sample data and obtain target system information in design space effectively is one of the key issues in improving RBFNN approximation capability. In this paper, a sequential RBFNN modeling method based on partial cross validation error estimation (PCVEE) criterion is proposed. This method can utilize the sample data as the validation data to test the approximation model accuracy, and expand the sample set purposively and refine the model sequentially according to the error estimation, so as to improve the approximation accuracy effectively. Two mathematical examples are tested to verify the efficiency of this method.

Published in:

2009 Fifth International Conference on Natural Computation  (Volume:3 )

Date of Conference:

14-16 Aug. 2009