By Topic

Fast Autotuning Configurations of Parameters in Distributed Computing Systems Using Ordinal Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fan Zhang ; Dept. of Autom., Tsinghua Univ., Beijing, China ; Cao, Junwei ; Lianchen Liu ; Cheng Wu

Conventional autotuning configuration of parameters in distributed computing systems using evolutionary strategies increases integrated performance notably, though at the expense of consuming too much measurement time. An ordinal optimization (OO) based strategy is proposed in this work, combined with neural networks to improve system performance and reduce measurement time, which is fast enough to autotune configurations for distributed computing applications. The method is compared with a well known evolutionary algorithm called Covariance Matrix Algorithm (CMA). Experiments are carried out using high dimensional rastrigin functions, which show that OO can reduce one to two orders of magnitude of simulation time while at the cost of an acceptable scope of optimization performance. We also carried out experiments using a real application system with three-tier web servers. Experimental results show that OO can reduce 40% testing time on average at a reasonable and slight cost of optimization performance.

Published in:

Parallel Processing Workshops, 2009. ICPPW '09. International Conference on

Date of Conference:

22-25 Sept. 2009