By Topic

Measurement of topography using polarimetric SAR images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schuler, D.L. ; Div. of Remote Sensing, Naval Res. Lab., Washington, DC, USA ; Jong-Sen Lee ; De Grandi, G.

A processing technique for polarimetric synthetic aperture radar (SAR) data has been developed which produces profiles of terrain slopes and elevations in the azimuthal (or along-track) direction. This technique estimates the average shift in orientation angle of copolarization backscatter caused by azimuthal tilts of the scattering plane. Using P-band data, tests of this technique have been made for an area in the Black Forest near Villingen/Schwenningen in Baden-Wurttemberg, Germany. The radar measured slope and derived elevation profiles have low rms errors and high correlation values when compared with a stereo-photograph digital-elevation map (DEM) for the area. This algorithm is capable of adaptively making transitions from the forested areas to nearby regions with open-terrain. Subsequent tests of the algorithm have been conducted using polarimetric SAR L-band data for a mountainous, nonforested, region in the Mojave Desert (Ft. Irwin, CA) where an accurate DEM also was available. Complete elevation and slope mapping of the terrain in two dimensions using this technique is possible when azimuthal elevation profiles are produced throughout the range extent of the SAR image

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:34 ,  Issue: 5 )