Cart (Loading....) | Create Account
Close category search window

Supervised classification of K-distributed SAR images of natural targets and probability of error estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nezry, E. ; CNES/CNRS/UPS, CESBIO, Toulouse, France ; Lopes, A. ; Ducrot-Gambart, D. ; Nezry, C.
more authors

A radiometric and textural classification method for the single-channel synthetic aperture radar (SAR) image is proposed, which explicitly takes into account the probability density function (pdf) of the underlying cross section for K-distributed images. This method makes extensive use of adaptive preprocessing methods (e.g. Gamma-Gamma MAP speckle filtering), in order to ensure good classification accuracy as well as fair preservation of the spatial resolution of the final result. Error rates can be estimated during the training step, allowing one to select only relevant reflectivity classes and to save computation time in trials. The classification method is based on a maximum likelihood (ML) segmentation of the filtered image. Finally, a texture criterion is introduced to improve the accuracy of the classification result

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:34 ,  Issue: 5 )

Date of Publication:

Sep 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.