Cart (Loading....) | Create Account
Close category search window
 

Deducing Causal Relationships among Different Histone Modifications, DNA Methylation and Gene Expression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yunfeng Qi ; Coll. of Bioinf. Sci. & Technol., Harbin Med. Univ., Harbin, China ; Yan Zhang ; Jie Lv ; Hongbo Liu
more authors

Histone modifications and DNA methylation are two major epigenetic factors regulating gene expression. However, the mechanism in which DNA methylation and histone modifications co-regulate gene expression was little studied. In our study, classifications of DNA methylation and gene expression showed the complicated relationship between gene expression and epigenetic factors. A Bayesian network was constructed by using the high-resolution maps of histone modifications, DNA methylation and gene expression in human CD4+ T cells to deduce causal and combinatorial relationships among them. PolII was found as the only direct regulator to gene expression, which was not found in prior studies. Our Bayesian network showed that epigenetic factors such as H3K4me3, H3K27me3 and DNA methylation are key regulators of gene expression, though indirectly. However they were considered to combinatorially stabilize the state and structure of chromatin.

Published in:

Natural Computation, 2009. ICNC '09. Fifth International Conference on  (Volume:6 )

Date of Conference:

14-16 Aug. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.