By Topic

A Complete Framework for Clustering Trajectories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Masciari, E. ; Inst. of High Performance Comput. & Networks, ICAR-CNR, Rende, Italy

The increasing availability of huge amounts of thin data, i.e. data pertaining to time and positions generated by different sources with a wide variety of technologies (e.g., RFID tags, GPS, GSM networks) leads to large spatio-temporal data collections. Mining such amounts of data is challenging, since the possibility to extract useful information from this peculiar kind of data is crucial in many application scenarios such as vehicle traffic management, hand-off in cellular networks, supply chain management. In this paper, we address the clustering of spatial trajectories. In the context of trajectory data, this problem is even more challenging than in the classical transactions, as here we deal with data (trajectories) in which the order of items is relevant. We propose a novel approach based on a suitable regioning strategy and an efficient clustering technique based on edit distance. Experiments performed on real world datasets have confirmed the efficiency and effectiveness of the proposed techniques.

Published in:

Tools with Artificial Intelligence, 2009. ICTAI '09. 21st International Conference on

Date of Conference:

2-4 Nov. 2009