By Topic

Automatic Labeling of Topics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Davide Magatti ; Dept. of Inf., Syst. & Commun., Univ. degli Studi di Milano-Bicocca, Milan, Italy ; Silvia Calegari ; Davide Ciucci ; Fabio Stella

An algorithm for the automatic labeling of topics accordingly to a hierarchy is presented. Its main ingredients are a set of similarity measures and a set of topic labeling rules. The labeling rules are specifically designed to find the most agreed labels between the given topic and the hierarchy. The hierarchy is obtained from the Google Directory service, extracted via an ad-hoc developed software procedure and expanded through the use of the OpenOffice English Thesaurus. The performance of the proposed algorithm is investigated by using a document corpus consisting of 33,801 documents and a dictionary consisting of 111,795 words. The results are encouraging, while particularly interesting and significant labeling cases emerged.

Published in:

2009 Ninth International Conference on Intelligent Systems Design and Applications

Date of Conference:

Nov. 30 2009-Dec. 2 2009