By Topic

Topographic map formation by maximizing unconditional entropy: a plausible strategy for “online” unsupervised competitive learning and nonparametric density estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Van Hulle, M.M. ; Lab. voor Neuro- en Psychofysiologie, Katholieke Univ., Leuven, Belgium

An unsupervised competitive learning rule, called the vectorial boundary adaptation rule (VBAR), is introduced for topographic map formation. Since VBAR is aimed at producing an equiprobable quantization of the input space, it yields a nonparametric model of the input probability density function. Furthermore, since equiprobable quantization is equivalent to unconditional entropy maximization, we argue that this is a plausible strategy for maximizing mutual information (Shannon information rate) in the case of “online” learning. We use mutual information as a tool for comparing the performance of our rule with Kohonen's self-organizing (feature) map algorithm

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 5 )