By Topic

Valley-Adaptive Clearing Scheme for Multimodal Optimization Evolutionary Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ellabaan, M.M.H. ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Yew Soon Ong

Recent studies have shown that clearing schemes are efficient multi-modal optimization methods. They efficiently reduce genetic drift which is the direct reason for premature convergence in genetic algorithms. However, clearing schemes assumed a landscape containing equal-spaced basins when using a fixed niche radius. Further, most clearing methods employ policies that favor elitists, thus affecting the explorative capabilities of the search. In this paper, we present a valley adaptive clearing scheme, aiming at adapting to non-uniform width of the valleys in the problem landscape. The framework of the algorithm involves hill-valley initialization, valley-adaptive clearing and archiving. Experimental results on benchmark functions are presented to demonstrate that the proposed scheme uncovers more local optima solutions and displays excellent robustness to varying niche radius than other clearing compeers.

Published in:

Intelligent Systems Design and Applications, 2009. ISDA '09. Ninth International Conference on

Date of Conference:

Nov. 30 2009-Dec. 2 2009