By Topic

A multilayered perceptron approach to prediction of the SEC's investigation targets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Taek Mu Kwon ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Duluth, MN, USA ; Feroz, E.H.

In the fields of accounting and auditing, detection of firms engaged in fraudulent financial reporting has become increasingly important, due to the increased frequency of such events and the attendant costs of litigation. The neural-network approach sheds some light on this problem due to the attributes that it requires minimum prior knowledge of the data and achieves a highly nonlinear computational model based on past experience (training). In this study, we employ seven red flags which are composed of four financial red flags and three turnover red flags in order to detect targets of the Securities and Exchange Commission's (SECs) investigation of fraudulent financial reporting. The red flags are computed over 70 firms spread among various industrial sectors, and form the base data that is used for developing the computational prediction model. Multilayered perceptron computation of this data was able to predict the targets of the SEC investigated firms with an average of 88% accuracy in the cross-validation test. On the other hand, the same data computed by the logit program gave an average prediction rate of 47%

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 5 )