By Topic

Automated learning for reducing the configuration of a feedforward neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chin-Chi Teng ; Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA ; B. W. Wah

In this paper, we present two learning mechanisms for artificial neural networks (ANN's) that can be applied to solve classification problems with binary outputs. These mechanisms are used to reduce the number of hidden units of an ANN when trained by the cascade-correlation learning algorithm (CAS). Since CAS adds hidden units incrementally as learning proceeds, it is difficult to predict the number of hidden units required when convergence is reached. Further, learning must be restarted when the number of hidden units is larger than expected. Our key idea in this paper is to provide alternatives in the learning process and to select the best alternative dynamically based on run-time information obtained. Mixed-mode learning (MM), our first algorithm, provides alternative output matrices so that learning is extended to find one of the many one-to-many mappings instead of finding a unique one-to-one mapping. Since the objective of learning is relaxed by this transformation, the number of learning epochs can be reduced. This in turn leads to a smaller number of hidden units required for convergence. Population-based learning for ANN's (PLAN), our second algorithm, maintains alternative network configurations to select at run time promising networks to train based on error information obtained and time remaining. This dynamic scheduling avoids training possibly unpromising ANNs to completion before exploring new ones. We show the performance of these two mechanisms by applying them to solve the two-spiral problem, a two-region classification problem, and the Pima Indian diabetes diagnosis problem

Published in:

IEEE Transactions on Neural Networks  (Volume:7 ,  Issue: 5 )