By Topic

Scaling Genetic Algorithms Using MapReduce

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Verma, A. ; Dept. of Comput. Sci., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Llora, X. ; Goldberg, D.E. ; Campbell, R.H.

Genetic algorithms (GAs) are increasingly being applied to large scale problems. The traditional MPI-based parallel GAs require detailed knowledge about machine architecture. On the other hand, MapReduce is a powerful abstraction proposed by Google for making scalable and fault tolerant applications. In this paper, we show how genetic algorithms can be modeled into the MapReduce model. We describe the algorithm design and implementation of GAs on Hadoop, an open source implementation of MapReduce. Our experiments demonstrate the convergence and scalability up to 105 variable problems. Adding more resources would enable us to solve even larger problems without any changes in the algorithms and implementation since we do not introduce any performance bottlenecks.

Published in:

Intelligent Systems Design and Applications, 2009. ISDA '09. Ninth International Conference on

Date of Conference:

Nov. 30 2009-Dec. 2 2009