By Topic

DC and RF performance of 0.25 μm p-type SiGe MODFET

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Arafa, M. ; Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA ; Fay, P. ; Ismail, K. ; Chu, J.O.
more authors

The DC and RF performance of a 0.25 μm gate-length p-type SiGe modulation-doped field-effect transistor (MODFET) is reported. The hole channel consists of compressively strained Si/sub 0.3/Ge/sub 0.7/ layer grown on a relaxed Si/sub 0.7/Ge/sub 0.3/ buffer on a Si substrate. The combination of high-hole mobility, low-gate leakage current, and improved ohmic contact metallization results in an enhancement of the DC and RF performance. A maximum extrinsic transconductance (g(m/sub e/xt)) of 230 mS/mm was measured. A unity current gain cut-off frequency (fT) of 24 GHz and a maximum frequency of oscillation (fmax) of 37 GHz were obtained for these devices.

Published in:

Electron Device Letters, IEEE  (Volume:17 ,  Issue: 9 )