By Topic

Feature Subset Selection Based on Improved Discrete Particle Swarm and Support Vector Machine Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weili Liu ; Sch. of Inf. Sci. & Eng., Henan Univ. of Technol., Zheng Zhou, China ; Dexian Zhang

In creating a pattern classifier, feature selection is often used to prune irrelevant and noisy features to producing effective features. Manually developing a feature set can be a very time consuming and costly endeavor. In this paper, an efficient feature selection algorithm based on improved binary particle swarm optimization and support vector machine Algorithm (IBPSO-SVM) was used. First a population of particles (feature subsets) were randomly generated, and then optimized by IBPSO-SVM wrapper algorithms; finally the best fitness feature subset was applied to SVM classification. The simulation experiment results have proved that the feature subset selection algorithm based on IBPSO-SVM is very effective.

Published in:

2009 International Conference on Information Engineering and Computer Science

Date of Conference:

19-20 Dec. 2009