By Topic

Online Classification Algorithm for Data Streams Based on Fast Iterative Kernel Principal Component Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wu Feng ; Sch. of Comput. Sci. & Technol., Nat. Univ. of Defense Technol., Changsha, China ; Zhong Yan ; Li Ai-ping ; Wu Quan-yuan

Several dimensionality-reduction techniques based on component analysis (CA) have been suggested for various data stream classification tasks and allow fast approximation. The variations of CA, such as PCA, KPCA and ICA, however, have limited dimensionality-reduction ability because of their high complexity or linear transformation scheme, etc. This paper proposes a fast iterative kernel principal component analysis algorithm: FIKDR, which non-linearly, iteratively extracts the kernel principal components with only linear order computation and storage complexity per iteration. On the basis of FIKDR, this paper proposes an online classification algorithm for data stream: FIKOCFrame. The convergence analysis confirms the validity of FIKDR and extensive experiments confirm the superiority of FIKOCFrame over recent classification schemes based on CA.

Published in:

Natural Computation, 2009. ICNC '09. Fifth International Conference on  (Volume:1 )

Date of Conference:

14-16 Aug. 2009