Cart (Loading....) | Create Account
Close category search window
 

On the complexity of distributed query optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chihping Wang ; Informix Software Inc., Menlo Park, CA, USA ; Ming-Syan Chen

While a significant amount of research efforts has been reported on developing algorithms, based on joins and semijoins, to tackle distributed query processing, there is relatively little progress made toward exploring the complexity of the problems studied. As a result, proving NP-hardness of or devising polynomial-time algorithms for certain distributed query optimization problems has been elaborated upon by many researchers. However, due to its inherent difficulty, the complexity of the majority of problems on distributed query optimization remains unknown. In this paper we generally characterize the distributed query optimization problems and provide a frame work to explore their complexity. As it will be shown, most distributed query optimization problems can be transformed into an optimization problem comprising a set of binary decisions, termed Sum Product Optimization (SPO) problem. We first prove SPO is NP-hard in light of the NP-completeness of a well-known problem, Knapsack (KNAP). Then, using this result as a basis, we prove that five classes of distributed query optimization problems, which cover the majority of distributed query optimization problems previously studied in the literature, are NP-hard by polynomially reducing SPO to each of them. The detail for each problem transformation is derived. We not only prove the conjecture that many prior studies relied upon, but also provide a frame work for future related studies

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:8 ,  Issue: 4 )

Date of Publication:

Aug 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.