Cart (Loading....) | Create Account
Close category search window
 

Voronoi Diagrams and Polynomial Root-Finding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kalantari, B. ; Dept. of Comput. Sci., Rutgers Univ., New Brunswick, NJ, USA

Voronoi diagram of points in the Euclidean plane and its computation is foundational to computational geometry. Polynomial root-finding is the origin of fundamental discoveries in all of mathematics and sciences. There is an intrinsic connection between polynomial root-finding in the complex plane and the approximation of Voronoi cells of its roots via a fundamental family of iteration functions, the basic family. For instance, the immediate basin of attraction of a root of a complex polynomial under Newton's method is a rough approximation to its Voronoi cell. We formally introduce these connections through the Basic Family of iteration functions, its properties with respect to Voronoi diagrams, and a corresponding visualization called polynomiography. Polynomiography is a medium for art, math, education and science. By making use of the Basic Family we introduce a layering of the points within each Voronoi cell of a polynomial root and study its properties and potential applications. In particular, we prove some novel results about the basic family in connection with Voronoi diagrams.

Published in:

Voronoi Diagrams, 2009. ISVD '09. Sixth International Symposium on

Date of Conference:

23-26 June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.