By Topic

An Algorithm for Computing Voronoi Diagrams of General Generators in General Normed Spaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Daniel Reem ; Dept. of Math., Technion - Israel Inst. of Technol., Haifa, Israel

Voronoi diagrams appear in many areas in science and technology and have diverse applications. Roughly speaking, they are a certain decomposition of a given space into cells, induced by a distance function and by a tuple of subsets called the generators or the sites. Voronoi diagrams have been the subject of extensive research during the last 35 years, and many algorithms for computing them have been published. However, these algorithms are for specific cases. They impose restrictions on either the space (often R2 or R3), the generators (distinct points, special shapes), the distance function (Euclidean or variations thereof) and more. Moreover, their implementation is not always simple and their success is not always guaranteed. We present an efficient and simple algorithm for computing Voronoi diagrams in general normed spaces, possibly infinite dimensional. We allow infinitely many generators of a general form. The algorithm computes each of the Voronoi cells independently of the others, and to any required precision. It can be generalized to other settings, such as manifolds, graphs and convex distance functions.

Published in:

Voronoi Diagrams, 2009. ISVD '09. Sixth International Symposium on

Date of Conference:

23-26 June 2009