By Topic

Performance Evaluation of Energy-Efficient Parallel I/O Systems with Write Buffer Disks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaojun Ruan ; Dept. of Comput. Sci. & Software Eng., Auburn Univ., Auburn, AL, USA ; Adam Manzanares ; Shu Yin ; Ziliang Zong
more authors

In the past decade, parallel disk systems have been developed to address the problem of I/O performance. A critical challenge with modern parallel I/O systems is that parallel disks consume a significant amount of energy in servers and high performance computers. To conserve energy consumption in parallel I/O systems, one can immediately spin down disks when disk are idle; however, spinning down disks might not be able to produce energy savings due to penalties of spinning operations. Unlike powering up CPUs, spinning down and up disks need physical movements. Therefore, energy savings provided by spinning down operations must offset energy penalties of the disk spinning operations. To substantially reduce the penalties incurred by disk spinning operations, we developed a novel approach to conserving energy of parallel I/O systems with write buffer disks, which are used to accumulate small writes using a log file system. Data sets buffered in the log file system can be transferred to target data disks in a batch way. Thus, buffer disks aim to serve a majority of incoming write requests, attempting to reduce the large number of disk spinning operations by keeping data disks in standby for long period times. Interestingly, the write buffer disks not only can achieve high energy efficiency in parallel I/O systems, but also can shorten response times of write requests. To evaluate the performance and energy efficiency of our parallel I/O systems with buffer disks, we implemented a prototype using a cluster storage system as a testbed. Experimental results show that under light and moderate I/O load, buffer disks can be employed to significantly reduce energy dissipation in parallel I/O systems without adverse impacts on I/O performance.

Published in:

2009 International Conference on Parallel Processing

Date of Conference:

22-25 Sept. 2009