By Topic

Run to Potential: Sweep Coverage in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Min Xi ; Dept. of Comput. Sci., Xi''an Jiaotong Univ., Xi''an, China ; Kui Wu ; Yong Qi ; Jizhong Zhao
more authors

Wireless sensor networks have become a promising technology in monitoring physical world. In many applications with wireless sensor networks, it is essential to understand how well an interested area is monitored (covered) by sensors. The traditional way of evaluating sensor coverage requires that every point in the field should be monitored and the sensor network should be connected to transmit messages to a processing center (sink). Such a requirement is too strong to be financially practical in many scenarios. In this study, we address another type of coverage problem, sweep coverage, when we utilize mobile nodes as supplementary in a sparse and probably disconnected sensor network. Different from previous coverage problem, we focus on retrieving data from dynamic Points of Interest (POIs), where a sensor network does not necessarily have fixed data rendezvous points as POIs. Instead, any sensor node within the network could become a POI. We first analyze the relationship among information access delay, information access probability, and the number of required mobile nodes. We then design a distributed algorithm based on a virtual 3D map of local gradient information to guide the movement of mobile nodes to achieve sweep coverage on dynamic POIs. Using the analytical results as the guideline for setting the system parameters, we examine the performance of our algorithm compared with existing approaches.

Published in:

Parallel Processing, 2009. ICPP '09. International Conference on

Date of Conference:

22-25 Sept. 2009