By Topic

An Optimum Adaptive Single-Port Microwave Beamformer Based on Array Signal Vector Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Farzaneh, S. ; Dept. of Electr. & Comput. Eng., Ecole Polytech. de Montreal, Montreal, QC, Canada ; Sebak, A.

A single-port adaptive beamforming structure based on an optimum perturbation technique is presented. The proposed perturbation technique is based on array signal vector estimation for temporally-correlated array signals. Temporal correlation is generated by jointly reducing the receiver bandwidth and increasing the weighting rate. The error signal is generated using the estimated array signal vector that is estimated in (L+1) perturbation cycles for an L-element array. The proposed perturbation technique with the adaptive unconstrained least mean square (ULMS) algorithm achieves a lower misadjustment than previous perturbation techniques and the multi-port ULMS algorithm. With proper gradient step size variations and/or weight clipping the proposed algorithm converges with a larger maximum gradient step size than the multi-port and other single-port algorithms. The new perturbation technique can be implemented with less hardware complexity and speed than previous techniques.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 3 )