By Topic

Dual-Grid Finite-Difference Frequency-Domain Method for Modeling Chiral Medium

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Alkan, E. ; Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA ; Demir, V. ; Elsherbeni, A.Z. ; Arvas, E.

A dual-grid finite-difference frequency-domain (DG-FDFD) method is introduced to solve for scattering of electromagnetic waves from bianisotropic objects. The formulations are based on a dual-grid scheme in which a traditional Yee grid and a transverse Yee grid are combined to achieve coupling of electric and magnetic fields that is imposed by the bianisotropy. Thus the underlying grid naturally supports the presented formulations. Introduction of a dual-grid scheme doubles the number of electromagnetic field components to be solved, which in turn implies increased time and memory of the computational resources for solution of the resulting matrix equation. As a remedy to this problem, an efficient iterative solution technique is presented that effectively reduces the solution time and memory. The presented formulations can solve problems including bianisotropic objects. The validity of the formulations is verified by calculating bistatic radar cross-sections of three-dimensional chiral objects. The results are compared with those obtained from analytical and other numerical solutions.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 3 )