Cart (Loading....) | Create Account
Close category search window
 

A Geometrical Optics Model of Three Dimensional Scattering From a Rough Layer With Two Rough Surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pinel, N. ; IREENA, Univ. Nantes Angers Le Mans, Nantes, France ; Johnson, J.T. ; Bourlier, C.

An asymptotic method is described for predicting the bistatic normalized radar cross section of a rough homogeneous layer made up of two rough surfaces. The model is based on iteration of the Kirchhoff approximation to calculate the fields scattered by the rough layer, and is reduced to the high-frequency limit in order to obtain numerical results rapidly. Shadowing effects, significant for large incidence or scattering angles, are taken into account through the use of shadowing functions. The model is applicable for moderate to large surface roughnesses having small to moderate slopes, and for both lossless and lossy inner media. It was validated for a rough layer with a rough surface over a perfectly flat surface in a preceding contribution. Here, the extension of the model to a rough layer with two rough surfaces is developed, and results are presented to validate the asymptotic model by comparison with a numerical reference method.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.