By Topic

A circuit-software co-design approach for improving EDP in reconfigurable frameworks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Somnath Paul ; Department of EECS, Case Western Reserve University, Cleveland, USA ; Subho Chatterjee ; Saibal Mukhopadhyay ; Swarup Bhunia

Use of two-dimensional memory array for lookup table (LUT) based reconfigurable computing frameworks has been proposed earlier for improvement in performance and energy-delay product (EDP). In this paper, we propose an integrated solution for achieving significantly higher EDP in these frameworks by leveraging on the read-dominant memory access pattern. First, we propose to employ an asymmetric memory cell design, which provides higher read performance (~2X) and lower read power (~1.6X) in order to improve the overall EDP during operation. Exploiting the fact that the proposed memory cell provides better read power/performance for cells storing logic `0', next we propose a content-aware application mapping approach, which tries to maximize the logic `0' content in the LUTs. We show that the joint circuit and application mapping level optimization approach provides significant improvement in system EDP for a set of benchmark circuits.

Published in:

2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers

Date of Conference:

2-5 Nov. 2009