By Topic

Single-wafer cluster tool performance: an analysis of the effects of redundant chambers and revisitation sequences on throughput

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Perkinson, T.L. ; SEMATECH, Austin, TX, USA ; Gyurcsik, R.S. ; McLarty, P.K.

Recent trends in the semiconductor industry indicate the need to explore alternatives to batch-wafer manufacturing. One proposed alternative is a micro-factory based on cluster tools. This paper presents an analysis of the effect of redundant chambers and chamber revisitation process sequences on the throughput in an individual cluster tool. Theoretical models which quantify the time required to process a lot of wafers in a cluster tool are developed for these situations. The differences between scheduling algorithms which use the load-lock as a queue and those that do not are also explored. Finally, the models developed in the work are integrated into a model which bounds the minimum theoretical turn-around-time which can be achieved in a cluster based fab

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:9 ,  Issue: 3 )