By Topic

Near-field to near/far-field transformation for arbitrary near-field geometry, utilizing an equivalent magnetic current

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Taaghol, A. ; Dept. of Electr. & Comput. Eng., Syracuse Univ., NY, USA ; Sarkar, T.K.

A method is presented for computing near- and far-field patterns of an antenna from its near-field measurements taken over an arbitrary geometry. This method utilizes near-field data to determine an equivalent magnetic current source over a fictitious surface which encompasses the antenna. This magnetic current, once determined, can be used to ascertain the near and the far fields. This method demonstrates that once the values of the electromagnetic field are known over an arbitrary geometry, its values for any other region can be obtained. An electric field integral equation is developed to relate the near fields to the equivalent magnetic current. A moment method procedure is employed to solve the integral equation by transforming it into a matrix equation. A least squares solution via singular value decomposition is used to solve the matrix equation. Computations with both synthetic and experimental data, where the near field of several antenna configurations are measured over various geometric surfaces, illustrate the accuracy of this method.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:38 ,  Issue: 3 )