By Topic

Effluent Quality Prediction of Wastewater Treatment Plant Based on Fuzzy-Rough Sets and Artificial Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fei Luo ; Coll. of Autom. Sci. & Eng., South China Univ. of Technol., Guangzhou, China ; Ren-hui Yu ; Yu-ge Xu ; Yan Li

Effluent ammonia-nitrogen (NH3-N), chemical oxygen demand (COD) and total nitrogen (TN) removals are the most common environmental and process performance indicator for all types of wastewater treatment plants (WWTPs). In this paper, a soft computing approach based on the back propagation (BP) neural networks and fuzzy-rough sets (FR-BP) has been applied for forecasting effluent NH3-N, COD and TN concentration of a real WWTP, in which the fuzzy-rough sets theory is employed to perform input selection of neural network which can reduce the influence due to the drawbacks of BP such as low training speed and easily affected by noise and weak interdependency data. The model performance is evaluated with statistical parameters and the simulation results indicates that the FR-BP modeling approach achieves much more accurate predictions as compared with the other traditional modeling approaches.

Published in:

Fuzzy Systems and Knowledge Discovery, 2009. FSKD '09. Sixth International Conference on  (Volume:5 )

Date of Conference:

14-16 Aug. 2009