By Topic

On the computational aspects of performability models of fault-tolerant computer systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pattipati, K.R. ; Dept. of Electr. & Syst. Eng., Connecticut Univ., Storrs, CT, USA ; Shah, S.A.

It is shown that the (scaled) conditional moments of performability in Markov models are the states of a cascaded, linear, continuous-time dynamic system with identical system matrices in each stage. This interpretation leads to a simple method of computing the first moment for nonhomogeneous Markov models with finite mission time. In addition, the cascaded system representation leads to the derivation of a set of two stable algorithms for propagating the conditional moments of performability in homogeneous Markov models. In particular, a very fast doubling algorithm using diagonal Pade approximation to compute the matrix exponential and repeated squaring is derived. The algorithms are widely recognized, to be superior to those based on eigenvalue analysis in terms of both the computational efficiency and stability. The algorithms have obvious implications in solving reliability/availability models with large mission times

Published in:

Computers, IEEE Transactions on  (Volume:39 ,  Issue: 6 )