By Topic

Joint Emotion-Topic Modeling for Social Affective Text Mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Shenghua Bao ; IBM Res. - China, Beijing, China ; Shengliang Xu ; Li Zhang ; Rong Yan
more authors

This paper is concerned with the problem of social affective text mining, which aims to discover the connections between social emotions and affective terms based on user-generated emotion labels. We propose a joint emotion-topic model by augmenting latent Dirichlet allocation with an additional layer for emotion modeling. It first generates a set of latent topics from emotions, followed by generating affective terms from each topic. Experimental results on an online news collection show that the proposed model can effectively identify meaningful latent topics for each emotion. Evaluation on emotion prediction further verifies the effectiveness of the proposed model.

Published in:

2009 Ninth IEEE International Conference on Data Mining

Date of Conference:

6-9 Dec. 2009