Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Filtering and Refinement: A Two-Stage Approach for Efficient and Effective Anomaly Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiao Yu ; Dept. of Comput. Sci., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Lu An Tang ; Jiawei Han

Anomaly detection is an important data mining task. Most existing methods treat anomalies as inconsistencies and spend the majority amount of time on modeling normal instances. A recently proposed, sampling-based approach may substantially boost the efficiency in anomaly detection but may also lead to weaker accuracy and robustness. In this study, we propose a two-stage approach to find anomalies in complex datasets with high accuracy as well as low time complexity and space cost. Instead of analyzing normal instances, our algorithm first employs an efficient deterministic space partition algorithm to eliminate obvious normal instances and generates a small set of anomaly candidates with a single scan of the dataset. It then checks each candidate with density-based multiple criteria to determine the final results. This two-stage framework also detects anomalies of different notions. Our experiments show that this new approach finds anomalies successfully in different conditions and ensures a good balance of efficiency, accuracy, and robustness.

Published in:

Data Mining, 2009. ICDM '09. Ninth IEEE International Conference on

Date of Conference:

6-9 Dec. 2009