By Topic

Discovering Excitatory Networks from Discrete Event Streams with Applications to Neuronal Spike Train Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Patnaik, D. ; Dept. of Comput. Sci., Virginia Tech, Blacksburg, VA, USA ; Laxman, S. ; Ramakrishnan, N.

Mining temporal network models from discrete event streams is an important problem with applications in computational neuroscience, physical plant diagnostics, and human-computer interaction modeling. We focus in this paper on temporal models representable as excitatory networks where all connections are stimulative, rather than inhibitory. Through this emphasis on excitatory networks, we show how they can be learned by creating bridges to frequent episode mining. Specifically, we show that frequent episodes help identify nodes with high mutual information relationships and which can be summarized into a dynamic Bayesian network (DBN). To demonstrate the practical feasibility of our approach, we show how excitatory networks can be inferred from both mathematical models of spiking neurons as well as real neuroscience datasets.

Published in:

Data Mining, 2009. ICDM '09. Ninth IEEE International Conference on

Date of Conference:

6-9 Dec. 2009