Cart (Loading....) | Create Account
Close category search window
 

Finding Associations and Computing Similarity via Biased Pair Sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Campagna, A. ; IT Univ. of Copenhagen, Copenhagen, Denmark ; Pagh, R.

Sampling-based methods have previously been proposed for the problem of finding interesting associations in data, even for low-support items. While these methods do not guarantee precise results, they can be vastly more efficient than approaches that rely on exact counting. However, for many similarity measures no such methods have been known. In this paper we show how a wide variety of measures can be supported by a simple biased sampling method. The method also extends to find high-confidence association rules. We demonstrate theoretically that our method is superior to exact methods when the threshold for "interesting similarity/confidence" is above the average pairwise similarity/confidence, and the average support is not too low. Our method is particularly good when transactions contain many items. We confirm in experiments on standard association mining benchmarks that this gives a significant speedup on real data sets (sometimes much larger than the theoretical guarantees). Reductions in computation time of over an order of magnitude, and significant savings in space, are observed.

Published in:

Data Mining, 2009. ICDM '09. Ninth IEEE International Conference on

Date of Conference:

6-9 Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.