By Topic

A Hybrid Selective Classifier for Categorizing Incomplete Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jingnian Chen ; Dept. of Inf. & Comput. Sci., Shandong Univ. of Finance, Jinan, China ; Li Xu

Selective classifiers can effectively improve the accuracy and efficiency of classification by deleting irrelevant or redundant attributes of a data set. Though many selective classifiers have been proposed, most of them deal with complete data. Yet actual data sets are often incomplete and have many redundant or irrelevant attributes. So constructing selective classifiers for incomplete data is important. In this paper a hybrid selective classifier for incomplete data, denoted as CBSD, is presented. The proposed algorithm needs no assumption about data sets that are necessary for previous methods of processing incomplete data in classification. Experiments results on twelve benchmark incomplete data sets show that CBSD can effectively improve the accuracy and efficiency of classification while enormously reducing the number of attributes.

Published in:

Fuzzy Systems and Knowledge Discovery, 2009. FSKD '09. Sixth International Conference on  (Volume:1 )

Date of Conference:

14-16 Aug. 2009