By Topic

Mining Representative Subspace Clusters in High-dimensional Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Guanhua Chen ; Sch. of EECS, Peking Univ., Beijing, China ; Xiuli Ma ; Dongqing Yang ; Shiwei Tang
more authors

A major challenge in subspace clustering is that subspace clustering may generate an explosive number of clusters with high computational complexity, which severely restricts the usage of subspace clustering. The problem gets even worse with the increase of the data's dimensionality. In this paper, we propose to mine the representative subspace clusters in high-dimensional data to alleviate the problem. Typically, subspace clusters can be clustered further into groups, and several representative clusters can be generated from each group. Unfortunately, when the size of the set of representative clusters is specified, the problem of finding the optimal set is NP-hard. To solve this problem efficiently, we present an approximate method PCoC. The greatest advantage of our method is that we only need a subset of subspace clusters as the input. Our performance study shows the effectiveness and efficiency of the method.

Published in:

Fuzzy Systems and Knowledge Discovery, 2009. FSKD '09. Sixth International Conference on  (Volume:1 )

Date of Conference:

14-16 Aug. 2009