By Topic

Application of ordinal optimization to stochastic classical job shop scheduling problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shih-Cheng Horng ; Dept. of Comput. Sci. & Inf. Eng., Chaoyang Univ. of Technol., Taichung, Taiwan ; Guan-Ling Man

In this paper, an ordinal optimization based approach is proposed to solve for a good enough schedule that minimizes expected sum of storage expenses and tardiness penalties of stochastic classical job shop scheduling problem using limited computation time. The proposed approach consists of exploration and exploitation stage. The exploration stage uses a genetic algorithm to select a good candidate solution set, where the objective function is evaluated with an artificial neural network that is trained beforehand. The exploitation stage composes of multiple substages, which allocate the computing resource and budget by iteratively and adaptively selecting the candidate solutions. At each substage, remaining solutions are simulated and some of them are eliminated, and the solution obtained in the last substage is the good enough schedule that we seek. The proposed approach is applied to a SCJSSP with random processing time in truncated normal, uniform, and exponential distributions. The test results demonstrated that the obtaining good enough schedule is successful in the aspects of solution quality and computational efficiency.

Published in:

Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on  (Volume:1 )

Date of Conference:

20-22 Nov. 2009