By Topic

A framework for the integration of gesture and posture recognition using HMM and SVM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rashid, O. ; Inst. for Electron., Signal Process. & Commun. (IESK), Otto-von-Guericke-Univ., Magdeburg, Germany ; Al-Hamadi, A. ; Michaelis, B.

For a successful real-time vision-based HCI system, inference from natural visual method is crucial. In this paper, we have aimed to provide interaction through gesture and posture recognition for alphabets and numbers. In addition, data fusion is carried out which integrates these systems to extract multiple meanings at the same time. 3D information is exploited for segmentation and detection of face and hands using normal Gaussian distribution and depth information. For gesture, orientation of two consecutive hand centroid points is computed which is then quantized to generate code words. HMM is trained by Baum Welch algorithm and classified by Viterbi path algorithm. In posture recognition, American Sign Language is recognized for static alphabets and numbers. Feature vectors are computed from statistical and geometrical properties of the hand and are used to train SVM for classification and recognition. Moreover, curvature analysis is carried out for alphabets to avoid misclassifications. Experimental results of the proposed framework successfully integrate both gesture and posture recognition system at decision level fusion whereas the gesture system achieves recognition rate of 98% (i.e. for alphabets and numbers) and the posture recognition system with recognition rates of 98.65% and 98.6% for ASL alphabets and numbers respectively.

Published in:

Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on  (Volume:4 )

Date of Conference:

20-22 Nov. 2009