By Topic

A Pulsed UWB Receiver SoC for Insect Motion Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Denis C. Daly ; Massachusetts Inst. of Technol., Cambridge, MA, USA ; Patrick P. Mercier ; Manish Bhardwaj ; Alice L. Stone
more authors

A 2.5 mW wireless flight control system for cyborg moths is presented, consisting of a 3-to-5 GHz non-coherent pulsed ultra-wideband receiver system-on-chip with an integrated 4-channel pulse-width modulation stimulator mounted on a 1.5 cm by 2.6 cm printed circuit board. The highly duty cycled, energy detection receiver requires 0.5-to-1.4 nJ/bit and achieves a sensitivity of -76 dBm at a data rate of 16 Mb/s (10-3 BER). A multi-stage inverter-based RF front end with resonant load and differential signal chain allow for robust, low energy operation. Digital calibration is used in the baseband amplifier, ADC and DLL to cancel voltage and timing offsets. Through the use of a flexible PCB and 3-D die stacking, the total weight of the electronics is kept to 1 g, within the carrying capacity of an adult Manduca sexta moth. Preliminary wireless flight control of a moth in a wind tunnel is demonstrated.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:45 ,  Issue: 1 )